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Polymers in a random environment
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Received 16 January 1992, in final form 27 July 1992

Abstract.  Self-avoiding polymer chains in a random environment are considered by
means of the renormalization group (RG) and without using the replica trick. The
coupled differential equations of the RG for the excluded volume strength and for the
strength of the disorder are derived and solved up to the first order of ¢ = 4 — d.
The quenched average of the number of states of a polymer chain is studied. In the
case of finite volume the result obtained is in agreement with that derived earlier by
Machta. The radius of the collapsed polymer derived by Edwards and Muthukumar is
rederived within the RG method. The quenched average of the second virial coefficient
of a solution of polymers in the random environment is considered.

The equilibrium properties of polymer chains in random environments have been
studied by many authors in recent years [1-14]. Systems in random environments are
usually studied by using the replica trick. In this article we consider polymers with
Gaussian disorder without using the replica trick. The idea of our approach consists of
the following. The random environment is considered at first as an inhomogeneous
external field. Assuming that the field is weak we expand the physical quantities
such as the normalized chain end-to-end correlation functions (CF) in powers of
the external potential. The average over this potential then occurs within these
perturbation expansions. We use the continuous model of a polymer chain described
by Edwards. The vector r(s) (0 € s < L, L is the contour length of the chain)
describes the configuration of the chain. The probability of the configuration r(s) is
given by

P({r(s)}) = exp {_% /[)L ds (Bg(ss))z

L L L
- %l-zv"fu dslfu dszéd(r(sl)—r(sz))—l—tfu dsU(r(s))}
(D

where d is the dimension of space, ! is the Kuhnian segment length, v, is the excluded
volume strength, and U{r(s)} is the external potential. The non-normalized end-to-
end chain correlation function is defined as follows

G1(p1, p2) = (exp(—ipyr(L) - ipyr(0)) 2)
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where the average has to be carried out with (1). We will study the quenched average
of the normalized end-to-end chain correlation function

91(p1,p2) = {G{p1,P2)/ G1(0,0)}y, (3)

where the bracket with the subscript U in (3) means the quenched average over the
random potential U(r). For the annealed average the numerator and denominator
in (3) are averaged over the disorder independently of each other. We note that in
(2) and (3) the ends of the polymer are not fixed. At first we expand the CF (2)
in powers of the external field U(r). The latter can be represented by means of
diagrams [15]. Examples of these diagrams are given in figure 1.

+ — + —_—ee .

Figure 1. The diagrammatic expansion of Gy{py, pz) in powers of the external field.
The broken lines are associated with the external potential U{r(s)).

Then we substitute the perturbation series of G((p|,p,) into (3) and carry out
the average over U(r). The disorder is assumed to be Gaussian and is characterized
by the correlator

(U(a)U{a)) = (2m)*Ay172%6% g, + qp). Q)

The consequence of this average is that the vertices associated with the external
potential will be connected in pairs with each other by an interaction line which is
associated with the factor given by equation (4). Because of the quenched average
contractions appear between the numerator and denominator of the CF (3). However
it can immediately be shown that such contractions contain the factor 1/V (V is the
volume) and they disappear in the thermodynamic limit. The factor 1/V appears
as follows. The first term of the perturbation expansion of the denominator is
(27)46(0) = V. We note that 8(0) appears as a result of the integration over
r(0). For a polymer with a fixed end such a factor does not appear. In order to
expand the denominator in powers of the external potential we have to factor cut the
common factor V. Because of this the diagrams of the denominator contain the factor
1/V. After carrying out the average over the disorder connected diagrams consisting
of the diagrams of the numerator and the denominator appear. Because of the
normalization of the denominator (the factor 1/V') these diagrams are independent
of V. The diagrams without such contractions contain the factor V. For this
reason the contractions between the numerator and denominator do not appear
in the thermodynamic limit. Therefore for infinite systems the quenched average
reduces to the annealed one. We note that this is due to the fact that the end of the
polymer is not fixed. It is interesting that the appearance of contractions between
numerator and denominator is related to replica symmetry breaking. In the case
where such contractions do not appear (a polymer with free ends) replica symmetry
breaking does not appear. For a polymer with one end fixed contractions between the
numerator and denominator appear and replica symmetry breaking takes place. It is
easy to see that for V' — oo the interaction appearing as a consequence of the average
over the disorder is of the same character as the excluded volume interaction with
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the one distinction that the former is negative. Thus the only effect of the random
environment is the ‘renormalization’ of the excluded volume strength: §, = vy — Ay.
As is well known from the excluded volume problem the renormalization of the
interaction constant in the one-loop approximation is given by [16]

b= B, (1 - 250L612+ ) . ®)

The factor (d/2x1)%/2{=* is absorbed into #,. The renormalization of the chain
end-to-end distance is given by [15, 16] R? = L'l with

y=L@+§%nﬂ+m). )

In order to obtain the differential equations of the renormalization group we introduce
the cutoff X by demanding that (5) and (6) remain finite in d = 4: (2/¢)L¢/? —
(2/€)(L*/? — X</?). Considering A as a parameter of the renormalization group
and introducing the dimensionless interaction constant g’ = (v — A)X’*/2 we obtain
differential equations for g’ and L’ as follows

dg' )9z = leg — 4g” dInL'/Bz =g (7

with ¢ = In A\’ The solution of the equation for L' is

8 1/4
L'=1L (1 + Eau/\s,{z) . (8)

The mean square end-to-end distance of the polymer in the renormalized theory is
given by

RY*=L'lf(9) &)

where f.(g) takes into account the regularized part of the perturbation expansion.
The final parameter of the RG, A, has to be identified with L’ (matching condition
[17, 16]). In the excluded volume regime (v, > 0) equation (8) yiclds a power-
like behaviour of R? = LI, R* ~ L%, with v = 1/2 + ¢/16. It is remarkable
that equation (9) together with the matching condition has a non-zero solution for

negative v, = —2A,. For finite L this solution can only be obtained numerically. For
L — oo, L approaches the value
e \H0-0
2 Lil=1 .
R ( A ) (10)

Besides the numerical prefactor the latter coincides with the result obtained by
Edwards and Muthukumar [5] by using the replica trick. We note that in obtaining
(10) we omit the function f,(g}. This would be legitimate if the latter tends to a
constant for large negative g. In the following we give an argument in support of
this. Up to the first order in g, f(g) is given by [16]

fg) =1+ e(=g) +- -

with ¢ > 0. According to this expansion f(g) is an increasing function of —g. On

the other hand an increase in f causes an increase in R? . However one would
exnect that 22 sunirld nnt increase with g. Fnr f'hli‘. reasnn we exnect f (n\ to have a
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finite value for large negative ¢ and not tend to zero for large g. The first correction
to (10) is .

R~ L1 (1 - %(LC/L)“). (11

For d = 4 instead of (10) we obtain RZ = IAexp(1/(44,), where X is an uitraviolet
cutoff (microscopic length) comparable with the statistical segment length.

Now we will consider the partition function of one polymer chain. The quenched
average for the chain with one end fixed is more difficult and will be considered in a
separate paper. The diagrammatic expansion of the difference 6Z = In{Z) — {In Z)
is represented in figure 2

-
+
+
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+
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Figure 2. Diagrams contributing to §Z. The broken curves represent the interaction
due to disorder. The thick curved lines represent the excluded volume interaction.

Analogously to the theory of polymer solutions [15, 16], the renormalization of
the strength of the disorder is obtained from the diagrams in figure 2 as

A=A (1 + gAuLffz - %vULE/Z + - ) . (12)

Combining (5) and (12) we obtain the renormalization prescription of the excluded
volume strength v as follows

12
v = v, (1 - gvoL‘” + ?auLf” + ) . (13)

Using the cutoff A as a parameter of the renormalization group and introducing
the dimensionless quantities g = vA\'“/2 and « = AX'*/Z we obtain the differential



Polymers in a random environment 6191

equations of the renormalization group as follows
dg/or = %e —4g°% + 6gu (14)

dufdz = Le+ 4u? - 2gu (15)
with = = In \'. The solutions of (14) and (15) are
= ' By

QN1 = (Ay/v)Q(A)HY2)
where Q(A') = 1+ (8/¢)v,\'¢/2. The renormalization of §Z gives

8Z = 3AL%V f(u,9) a7

where the function f.(u,g) takes into account the renormalized part of the
perturbation expansion. In the strong self-avoiding limit, v, — oo, g tends to

g" = €/8 and « tends to zero as vu_llz(l"“). Thus, in this limit §Z is obtained as

§7 ~ N,L*V.

v

A=2200M (16)
Vo

In the limit V' — oc the annecaled average coincides with the quenched one. In the
opposite limit when the dimension of the chain becomes comparable with the volume,
V ~ L"%, we get from the above equation

§Z~ L (18)

which agrees with the result obtained by Machta [16] and Machta and Kirkpatrick
[11] for a polymer chain with a fixed end and for the disorder generated by the site
dilution of the lattice. We note that in deriving (18) the end of the polymer was
not fixed. The difference in the disorder (site dilution in [10, 11] and the Gaussian
disorder here} does not appear to be significant for the behaviour of §Z in (18).

In order to study the behaviour of many polymer chains in the same environment
we consider the quenched average of the osmotic pressure. In the case of dilute
polymer solutions we can restrict ourselves to the second virial coefficient which is
the quenched average of the usual definition of the latter [15, 16]. The result of the

somnntatinn ic
Wllll} LML ELSAE LY

Ay = v L2 (u, 9) (19)

where f} (u,g) stands for the renormalized perturbation expansion of A; and  and
g are given by (14)—(16). Equations (16) have a pole at the condition

8  yies2_ Yy
EAU)\ -1+-A_u- (20)
As can be seen from the differential equations (14) and (15) even for v, > A,
the attraction caused by the disorder dominates the self-avoidance. This has the
consequence that the excluded volume strength, being the positive quantity, will be
renormalized as in the case of attraction. The pole is the consequence of this, If one
approaches the pole, the effective interaction constants A and v tend to infinity. The
renormalization has to be carried out up to a length that is smaller than the length
leading to the pole. The pole gives the condition at which the attractive force due
to the disorder begins to dominate the self-avoidance. In order to study the result
of the interplay between these two interactions one must look for the behaviour
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of the renormalized perturbation expansion A,. Because of the dominance of the
attraction we expect the first-order correction to ff(u,g) to be negative and for
large u and g the latter tends to zero. Therefore the attractive interaction caused
by the disorder compensates for the bare excluded volume interaction between the
chains and, as a result, the second virial coefficient becomes zero. We note that in
the strong self-avoiding limit the disorder is still irrelevant.

In conclusion we have considered the polymers in a random environment by
treating the disorder in the framework of the perturbation theory. For one polymer
the disorder results a reduced excluded volume strength, and it becomes irrelevant
when the self-avoidance is strong enough. The quenched average of the number of
states of a polymer chain in a finite volume obtained is in agreement with the result of
Machta, which was derived for self-avoiding walks on site diluted lattices. The radius
of a collapsed polymer obtained earlier by Edwards and Muthukumar [5] has been
rederived within the RG method. To study the behaviour of different polymer chains
in random environment we have considered the quenched average of the second virial
coefficient. We have shown that, for long polymer chains, disorder prevails over the
excluded volume interaction between different chains. From this result we draw the
conclusion that the disorder screens the bare excluded volume interaction between
the chains. However, the self-avoidance of each polymer chain can stifl remain.
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