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Polymers in a random environment 
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Abstract. Self-svoiding polymer chains in B random environment are considered bj 
means of the renormalization p u p  (RG) and without using the replica trick. ' h e  
mupled differential equations of the RG for the excluded volume strength and for the 
strength of the disorder are derived and solved up to the fint order of e = 4 - d .  
?he quenched average of the number of states of a polper  chain is audied. In the 
case of finite volume the resuit obtained is in agreement with that derived earlier bj 
Machta. The radius of the mllapsed polymer derived by Edwards and Muthukumar is 
rederived within the RG method. The quenched average of the semnd virial mefficient 
of a solution of polymers in the random environment is considered. 

The equilibrium properties of polymer chains in random environments have been 
studied by many authors in recent years [l-141. Systems in random environmenu are 
usually studied by using the replica trick. In this article we consider polymers with 
Gaussian disorder without using the replica trick. The idea of our approach consists of 
the following. The random environment is considered at first as an inhomogeneous 
external field. Asuming that the field is weak we expand the physical quantities 
such as the normalized chain end-to-end correlation functions (CF) in powers of 
the external potential. The average over this potential then occurs within these 
perturbation expansions. We use the continuous model of a polymer chain described 
hy Edwards. The vector ~ ( s )  (0 < s < L ,  L is the contour length of the chain) 
describes the configuration of the chain. The probability of the configuration ~ ( s )  is 
given by 

(1) 
where d is the dimension of space, 1 is the Kuhnian segment length, U" is the excluded 
volume strength, and U( r( 8 ) )  is the external potential. The non-normalized end-to- 
end chain correlation function is defined as follows 

G , ( P , , P , )  = (exP(-iPlr(L) - ip2r(0)) (2) 
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6188 S Slepanow 

where the average has to be carried out with (1). We will study the quenched average 
of the normalized end-to-end chain correlation function 

where the bracket with the subscript U in (3) means the quenched average Over the 
random potential U ( T ) .  For the annealed average the numerator and denominator 
in (3) are averaged over the disorder independently of each other. We note that in 
(2) and (3) the ends of the polymer are not ked. At first we expand the CF (2) 
in powers of the external field U ( T ) .  The latter can be represented by means of 
diagrams [lS]. Examples of these diagrams are given in figure 1. 

I I 1  
I I 1  

+ - + - +  

Fkum 1. 'The diagrammatic expansion of G ~ ( p ~ , p x )  in powen of the external field. 
?he broken lines are associated with the extemal palential U(r(s)) .  

Then we substitute the perturbation series of C, (p , , p , )  into (3) and carry out 
the average Over U ( T ) .  The disorder is assumed to be Gaussian and is characterized 
by the correlator 

( U ( q d U ( 4 2 ) )  = (2r)dA"l -Z6d(% + 4 2 ) .  (4) 

The consequence of this average is that the vertices associated with the external 
potential will be connected in pairs with each other by an interaction line which is 
associated with the factor given by equation (4). Because of the quenched average 
contractions appear between the numerator and denominator of the CF (3). However 
it can immediately be shown that such contractions contain the factor 1 / V  (V is the 
volume) and they disappear in the thermodynamic limit. The factor 1 / V  appears 
as follows. The first term of the perturbation expansion of the denominator is 
( 2 ~ ) ~ 6 ( 0 )  = V. We note that 6(0) appears as a result of the integration over 
r(0).  For a polymer with a tixed end such a factor does not appear. In order to 
expand the denominator in powers of the external potential we have tu factor out the 
common factor V. Because of this the diagrams of the denominator contain the factor 
1/V. After carrying out the average over the disorder connected diagrams consisting 
of the diagrams of the numerator and the denominator appear. Because of the 
normalization of the denominator (the factor 1 /V)  these diagrams are independent 
of V. The diagrams without such contractions contain the factor V. For this 
reason the contractions hetween the numerator and denominator do not appear 
in the thermodynamic limit. Therefore for infinite systems the quenched average 
reduces to the annealed one. We note that this is due to the fact that the end of the 
polymer is not k e d .  It is interesting that the appearance of contractions between 
numerator and denominator is related to replica symmetry breaking. In the case 
where such contractions do not appear (a polymer with free ends) replica symmetry 
breaking does not appear. For a polymer with one end k e d  contractions between the 
numerator and denominator appear and replica symmetry breaking takes place.. It is 
easy to see that for V i 03 the interaction appearing as a consequence of the average 
over the disorder is of the same character as the excluded volume interaction with 
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the one distinction that the former is negative. Thus the only effect of the random 
environment is the 'renormalization' of the excluded volume strength: cU = vu - A,. 
As is well known from the excluded volume problem the renormalization of the 
interaction constant in the one-loop approximation is given by (161 

The hctor ( d / 2 1 1 1 ) d w 4  is absorbed into 0". The renormalization of the chain 
end-to-end distance is given by [15, 161 R2 = L'I with 

In order to obtain the differential equations of the renormalization group we introduce 
the cutoff X by demanding that (5) and (6) remain finite in d = 4 ( Z / C ) L ' / ~  + 

( 2 / e ) ( L E / '  - A'/2). Considering X as a parameter of the renormalization group 
and introducing the dimensionless interaction constant g' = ( v  - A)X"12 we obtain 
differential equations for g' and L' as follows 

ag'/ax = - 4gt2 ain Ltlax = g' (7) 

with x = In A'. The solution of the equation for L' is 

The mean square end-to-end distance of the polymer in the renormalized theory is 
given by 

RZ = L ' l f , ( g )  (9) 

where f , ( g )  takes into account the regularized part of the perturbation expansion. 
The final parameter of the RG, A,, has to be identified with L' (matching condition 
(17, 161). In the excluded volume regime (vu > 0) equation (8) yields a power- 
like behaviour of RZ = L'l, R2 = Lz", with U = 1/2 + c/16. It is remarkable 
that equation (9) together with the matching condition has a non-zero solution for 
negative vu = -Ao. For finite L this solution can only be obtained numerically. For 
L + m, CL approaches the value 

Besides the numerical prefactor the latter coincides with the result obtained by 
Edwards and Muthukumar [SI by using the replica trick. We note that in obtaining 
(10) we omit the function f , ( g ) .  This would be legitimate if the latter tends to a 
constant for large negative g. In the following we give an argument in support of 
this. Up to the first order in g ,  f , ( g )  is given by (161 

/,(SI = 1 +. (cy?  + 
with c > 0. According to this expansion f , ( g )  is an increasing function of -9. On 
the other hand an increase in f causes an increase in R2 . However one would 
expect th.2.t .p W x ! d  En! i!!cresse wit!! y .  k r  this reaso!? we expect f,(y) !!? !!me I 
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finite d u e  for large negative g and not tend to zero for large g. The first correction 
to (10) is 

R:-  L,1 1- - ( L c / L ) 4  . (1 1) c ) 
For d = 4 instead of (10) we obtain R: = lAexp(l/(4Au), where X is an ultraviolet 
cutoff (microscopic length) comparable with the statistical segment length. 

Now we will consider the partition function of one polymer chain. The quenched 
average for the chain with one end fixed k more difficult and will be considered in a 
separate paper. The diagrammatic expansion of the difference 6 2  = In (2 )  - (In 2) 
is represented in figure 2 

I I I 
I + I +  I + 
I 

I I I 

- 
I I 8 \ I  0 4 I 
I I + 80 + I + 

I 
I I 0 8 I 

08 
I I / 8  

Figure Z Diagrams contlibuting to 6 2 .  The broken N N ~ S  represent the interaction 
due 10 disorder. The thick curved lines represent the excluded volume interaction. 

Analogously to the theory of polymer solutions [15, 161, the renormalization of 
the strength of the disorder is obtained from the diagrams in figure 2 as 

Combining (5 )  and (12) we obtain the renormalization prescription of the excluded 
volume strength U" as follows 

Using the cutoff X as a parameter of the renormalization group and introducing 
the dimensionless quantities 9 = uX"/' and TL = AA''/' we obtain the differential 
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equations of the renormalization group as follows 
ag/ax = i E  1 - 4g2 + 6gu 

aulax = $ E  + 4u2 - 2gu 

with I = In A'. The solutions of (14) and (15) are 

% 
Q(A')(l- ( A ~ / v ~ ) Q ( A ' ) ~ / ~ )  

U =  

6191 

where & ( A ' )  = 1 + ( ~ / E ) V ~ A " / ~ .  The renormalization of 6 2  gives 

6Z= fAL"/Vf,(u,g) (17) 
where the function f ,(u,g) takes into account the renormalized p r t  of the 
perturbation expansion. In the strong self-avoiding limit, v,, - 00, g tends to 
g' = ~ / 8  and U tends to zero as v;~/*('-'/~). Thus, in this limit 6 2  is obtained as 

6 2  A,L~/v .  

In the limit V -t 03 the annealed average coincides with the quenched one. In the 
opposite limit when the dimension of the chain becomes comparable with the volume, 
V Y L"', we get from the above equation 

6 2  n. LZ-'" ('8) 
which agrees with the result obtained by Machta [lo] and Machta and Kirkpatrick 
[ l l ]  for a polymer chain with a fixed end and for the disorder generated by the site 
dilution of the lattice. We note that in deriving (U) the end of the polymer was 
not fixed. The difference in the disorder (site dilution in [lo, 111 and the Gaussian 
disorder here) does not appear to be significant for the behaviour of 6 2  in (18). 

In order to study the behaviour of many polymer chains in the same environment 
we consider the quenched average of the mmotic pressure. In the case of dilute 
polymer solutions we can restrict ourselves to the second virial coefficient which is 
the quenched average of the usual definition of the latter 115, 161. The result of the 
cmIp-tatiG=E B 

A, = vLRfL(u,g) (19) 
where f> (u ,g )  stands for the renormalized perturbation expansion of A, and U and 
g are given by (14)-(16). Equations (16) have a pole at the condition 

As can be seen from the differential equations (14) and (15) even for vu > A, 
the attraction caused by the disorder dominates the self-avoidance. This has the 
oonsequence that the excluded volume strength, being the positive quantity, will be 
renormalized as in the case of attraction. The pole is the consequence of this. If one 
approaches the pole, the effective interaction constants A and v tend to infinity. The 
renormalization has to be carried out up to a length that is smaller than the length 
leading to the pole. The pole gives the condition at which the attractive force due 
to the disorder begins to dominate the self-avoidance. In order to study the result 
of the interplay between these two interactions one must look for the behaviour 
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of the renormalized perturbation expansion A,. Because of the dominance of the 
attraction we expect the first-order correction to f;(~,g) to be negative and for 
large U and g the latter tends to zero. Therefore the attractive interaction caused 
by the disorder compensates for the bare excluded volume interaction between the 
chains and, as a result, the second virial coefficient becomes zero. We note that in 
the strong self-avoiding limit the disorder is still irrelevant. 

In conclusion we have considered the polymers in a random environment by 
treating the disorder in the framework of the perturbation theory. For one polymer 
the disorder results a reduced excluded volume strength, and it becomes irrelevant 
when the self-avoidance is strong enough. The quenched average of the number of 
states of a polymer chain in a finite volume obtained is in agreement with the result of 
Machta, which was derived for self-avoiding walks on site diluted lattices. The radius 
of a collapsed polymer obtained earlier by Edwards and Muthukumar [5] has been 
rederived within the RG method. 7h study the behaviour of different p!y%cr &aim 
in random environment we have considered the quenched average of the second virial 
coefficient. We have shown that, for long polymer chains, disorder prevails over the 
excluded volume interaction between different chains. From this result we draw the 
conclusion that the disorder screens the bare excluded volume interaction between 
the chains. However, the self-avoidance of each polymer chain can still remain. 
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